En
  • bevictor伟德官网電機系
    官方微信公衆号
    bevictor伟德官网電機系本科生
    官方微信公衆号
    bevictor伟德官网電機系研究生
    官方微信公衆号
    bevictor伟德官网電機系校友會
    官方微信公衆号
    bevictor伟德官网能源互聯網創新研究院
    官方微信公衆号
    清華四川能源互聯網研究院
    官方微信公衆号

電機系微信公衆号

校友微信公衆号

研究生微信公衆号

本科生微信二維碼

北京院微信公衆号

四川院微信公衆号

通知公告

當前位置: 首頁 > 本系動态 > 通知公告 > 正文
是否可以下載

報告題目: Making the distribution grid observable via deep learning

報 告 人: Prof. Lang Tong

報告時間: 2018年12月17日,10:00 am– 12:00pm

報告地點: bevictor伟德官网西主樓2區203會議室

聯 系 人: 孫宏斌 電話:62783086


Lang Tong is the Irwin and Joan Jacobs Professor of Engineering of Cornell University and the Site Director of Power Systems Engineering Research Center (PSERC). He received the B.E. degree from Tsinghua University and the Ph.D. degree in electrical engineering from the University of Notre Dame.? His current research focuses on data analytics, optimization, and economic problems in energy and power systems, smart grid, and electrified transportation systems.? A Fellow of IEEE, Lang Tong is the 2018 Fulbright Distinguished Chair in Alternative Energy.

Abstract:

Unlike the transmission systems where redundant measurements are collected, current distribution systems have few installed meters.? The lack of real-time measurements makes the distribution grid unobservable for state estimation. The conventional weighted least squares (WLS) method and its variants either fail numerically or produce misleading estimates.? In this talk, we present a machine learning approach to state estimation, bad-data detection, and bad-data cleansing.? The machine learning solution overcomes system unobservability and outperforms conventional WLS-based pseudo-measurement techniques.

 

—— 分享 ——

上一篇:Models and concepts for seamless integration of electric vehicles

關閉

Baidu
sogou