1、發表論文
[45] J.Zhang, L. Peng, S. Wen, S. Huang. “A Review on Concrete Structural Properties and Damage Evolution Monitoring Techniques,” Sensors, 2024, 24, 620: 1-29, doi: 10.3390/s24020620.
[44] H. Sun, Q. Feng, J. Li, F. Zheng, L. Peng, S. Li, S. Huang. “Rail Web Buried Defect Location and Quantification Methods in Hybrid High-Order Guided Wave Detection,” IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1-12, doi: 10.1109/TIM.2023.3338679.
[43] L. Peng,S. Li, H. Sun and S. Huang. “A Pipe Ultrasonic Guided Wave Signal Generation Network Suitable for Data Enhancement in Deep Learning: US-WGAN,” Energies, 2022, 15(18): 6695, doi: 10.3390/en15186695.
[42] L. Peng, S. Huang, S. Wang and W. Zhao, “A Simplified Lift-Off Correction for Three Components of the Magnetic Flux Leakage Signal for Defect Detection,” IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-9, doi: 10.1109/TIM. 2021.3058407.
[41] L. Peng, S. Huang, S. Wang and W. Zhao, “An Element-Scaling-Revising Method (ESRM) for Magnetic Flux Leakage Signal Analysis,” International Journal of Applied Electromagnetics and Mechanics, 2018, 57(1): 83-92, doi: 10.3233/JAE-170128.
[40] L. Peng, S. Huang, S. Wang and W. Zhao, “Data Recovery Method for MFL Signals Based on Sinc Function for Oil & Gas Pipeline,” IEEE Sensors 2020. 2020: 1-4, doi: 10.1109/SENSORS47125.2020.9278657.
[39] L. Peng, S. Huang, S. Wang and W. Zhao, “Three-Dimensional Magnetic Flux Leakage Signal Analysis and Imaging Method for Tank Floor Defect,” The Journal of Engineering, 2018, 17: 1865-1870, doi: 10.1049/joe.2018.8344.
[38] L. Peng, S. Huang, S. Wang and W. Zhao, “High Precision Identification Method of Fan Main Shaft Defects Based on Rotating Magnetic Field Detection,” IEEE International Instrumentation and Measurement Technology Conference, 2021:1-6, doi: 10.1109/I2MTC 50364.2021.9460043.
[37] L. Peng, H. Sun, S. Wang, Q. Wang, W. Zhao and S. Huang, “Defect Detection and Identification of Point-Focusing Shear-Horizontal EMAT for Plate Inspection,” Conference on Precision Electromagnetic Measurements, 2020: 1-2, doi: 10.1109/CPEM49742.2020. 9191716.
[36] L. Peng, S. Huang, S. Wang and W. Zhao, “An Element-Combination Method for Arbitrary Defect Reconstruction from MFL Signals,” IEEE International Instrumentation and Measurement Technology Conference, 2020: 1-6, doi: 10.1109/I2MTC 43012.2020.9128671.
[35] L. Peng, S. Huang, S. Wang and W. Zhao, “A Simplified Calculation Model of MFL Signal of Defect Based on Lift-off Value,” Conference on Precision Electromagnetic Measurements, 2020: 1-2, doi: 10.1109/CPEM49742.2020.9191696.
[34] L. Peng, S. Huang, S. Wang and W. Zhao, “A 3-D Pseudo Magnetic Flux Leakage (PMFL) Signal Processing Technique for Defect Imaging,” IEEE International Instrumentation and Measurement Technology Conference, Auckland, New Zealand, 2019: 1-5, doi: 10.1109/I2MTC.2019.8827047.
[33] L. Peng, S. Huang, Q. Wang, S. Wang and W. Zhao, “A Lift-Off Revision Method for Magnetic Flux Leakage Measurement Signal,” Conference on Precision Electromagnetic Measurements, Paris, 2018: 1-2, doi: 10.1109/I2MTC.2018.8409535.
[32] L. Peng, S. Huang, S. Wang and W. Zhao, “The Real-Time Quantitation and Display Method for Incomplete Defect MFL Signals,” 19th World Conference on Non-Destructive Testing, WCNDT 2016: 1-10.
[31] S. Huang, L. Peng, H. Sun, Q. Wang, W. Zhao and S. Wang, “Frequency Response of an Underwater Acoustic Focusing Composite Lens,” Applied Acoustics, 2021, 173: 1-6, doi: 10.1016/j.apacoust.2020.107692.
[30] S. Huang, L. Peng, Q. Wang, S. Wang and W. Zhao, “An Opening Profile Recognition Method for Magnetic Flux Leakage Signals of Defect,” IEEE Transactions on Instrumentation and Measurement, 2019: 68(6): 2229-2236, doi: 10.1109/TIM. 2018.2869438.
[29] S. Huang, L. Peng, S. Wang and W. Zhao, “A Basic Signal Analysis Approach for Magnetic Flux Leakage Response,” IEEE Transactions on Magnetics, 2018, 54(10): 1-6, doi: 10.1109/TMAG.2018.2858201.
[28] S. Huang, L. Peng, Q. Wang, S. Wang and W. Zhao, “A Defect Opening Profile Estimation Method Based on the Right-Angle Characteristic of Vertical Component of MFL Signal,” Conference on Precision Electromagnetic Measurements, 2018: 1-5, doi: 10.1109/CPEM.2018.8500976.
[27] H. Sun, L. Peng, J. Lin, S. Wang, W. Zhao and S. Huang, “Microcrack defect quantification using a focusing high-order SH guided wave EMAT: the physics-informed deep neural network GuwNet,” IEEE Transactions on Industrial Informatics, 2022, 18(5):3235-3247, doi: 10.1109/TII.2021.3105537.
[26] H. Sun, L. Peng, S. Huang, S. Li, Y. Long, S, Wang, W. Zhao, “Development of a Physics-Informed Doubly Fed Cross-Residual Deep Neural Network for High-Precision Magnetic Flux Leakage Defect Size Estimation,” IEEE Transactions on Industrial Informatics, 2022, 18(3): 1629-1640, doi: 10.1109/TII.2021.3089333.
[25] H. Sun, L. Peng, S. Wang, Q. Wang, W. Zhao and S. Huang, “Effective Focal Area Dimension Optimization of Shear Horizontal Point-Focusing EMAT Using Orthogonal Test Method,” IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-8, doi: 10.1109/TIM.2021.3073713.
[24] H. Sun, L. Peng, S. Wang, S. Huang and K. Qu, “Development of Frequency-Mixed Point-Focusing Shear Horizontal Guided-Wave EMAT for Defect Inspection Using Deep Neural Network,” IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-14, doi: 10.1109/TIM.2020.3033941.
[23] H. Sun, L. Peng, S. Huang, Q. Wang, S. Wang and W. Zhao, “Analytical Model and Optimal Focal Position Selection for Oblique Point-Focusing Shear Horizontal Guided Wave EMAT,” Construction and Building Materials, 2020: 258: 1-8, doi: 10.1016/j. conbuildmat.2020.120375.
[22] H. Sun, L. Peng, S. Huang, S. Wang, Q. Wang and W. Zhao, “Mode Identification of Denoised SH Guided Waves Using Variational Mode Decomposition Method,” IEEE Sensors 2020. 2020: 1-3, doi: 10.1109/SENSORS47125.2020.9278659.
[21] H. Sun, L. Peng, S. Wang, Q. Wang, W. Zhao and S. Huang, “Effective Focal Area Dimension Optimization of Shear-Horizontal Point-Focusing EMAT Using Orthogonal Test Method,” Conference on Precision Electromagnetic Measurements, 2020: 1-2, doi: 10.1109/CPEM49742.2020.9191861s.
[20] S. Huang, H. Sun, L. Peng, S. Wang, Q. Wang and W. Zhao, “Defect Detection and Identification of Point-Focusing Shear-Horizontal EMAT for Plate Inspection,” IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-9, doi: 10.1109/TIM.2021.3062421.
[19] Y. Long, S. Huang, L. Peng, S. Wang and W. Zhao, “A Novel Compensation Method of Probe Gesture for Magnetic Flux Leakage Testing,” IEEE Sensors Journal, 2021, 21(9): 10854-10863, doi: 10.1109/JSEN.2021.3059899.
[18] Y. Long, S. Huang, L. Peng, S. Wang and W. Zhao, “A Characteristic Approximation Approach to Defect Opening Profile Recognition in Magnetic Flux Leakage Detection,” IEEE Transactions on Instrumentation and Measurement, 2021: 70: 1-12, doi: 10.1109/TIM.2021.3050185.
[17] Y. Long, S. Huang, L. Peng, W. Wang, S. Wang and W. Zhao, “Internal and External Defects Discrimination of Pipelines Using Composite Magnetic Flux Leakage Detection,” IEEE International Instrumentation and Measurement Technology Conference, 2021: 1-6, doi: 10.1109/I2MTC50364.2021.9460069.
[16] Y. Long, S. Huang, L. Peng, S. Wang and W. Zhao, “A New Dual Magnetic Sensor Probe for Lift-off Compensation in Magnetic Flux Leakage Detection,” IEEE International Instrumentation and Measurement Technology Conference, 2020: 1-6, doi: 10.1109/I2MTC43012.2020.9129204.
[15] Y. Long, S. Huang, L. Peng, S. Wang and W. Zhao, “A Characteristic Approximation Approach to Defect Edge Detection in Magnetic Flux Leakage Testing,” Conference on Precision Electromagnetic Measurements, 2020: 1-2, doi: 10.1109/ CPEM49742.2020.9191752.
[14] W. Wang, S. Huang, L. Peng, Y. Long, S. Wang and W. Zhao, “An Improved MFL Method Fusing Multi-Space Magnetic Field Information for The Surface Defect Inspecting,” IEEE International Instrumentation and Measurement Technology Conference, 2021, pp. 1-6, doi: 10.1109/I2MTC50364.2021.9460085.
[13] W. Wang, S. Huang, L. Peng, S. Wang and W. Zhao, “Identifying Surface Defect Opening Profiles Based on the Uniform Magnetic Field Distortion,” IEEE International Instrumentation and Measurement Technology Conference, 2020: 1-6, doi: 10.1109/I2MTC43012.2020.9129184.
[12] Y. Long, J. Zhang, S. Huang, L. Peng, W. Wang, S. Wang, W. Zhao, "A Novel Crack Quantification Method for Ultra-High-Definition Magnetic Flux Leakage Detection in Pipeline Inspection," IEEE Sensors Journal, 2022, 22(16): 16402-16413, doi: 10.1109/JSEN.2022.3190684.
[11] H. Sun, S. Wang, S. Huang, L. Peng, Q. Wang and W. Zhao, “Design and Characterization of an Acoustic Composite Lens With High-Intensity and Directionally Controllable Focusing,” Scientific Reports, 2020, 10: 1469, doi: 10.1038/s41598-020-58092-6.
[10] H. Sun, S. Wang, S. Huang, L. Peng, Q. Wang, W. Zhao and Jun Zou, “Point-Focusing Shear-Horizontal Guided Wave EMAT Optimization Method Using Orthogonal Test Theory,” IEEE Sensors Journal, 2020, 20(12): 6295-6304, doi: 10.1109/ JSEN.2020.2976198.
[9] H. Sun, S. Wang, S. Huang, L. Peng, Q. Wang and W. Zhao, “Oblique Point-Focusing Shear-Horizontal Guided-Wave Electromagnetic Acoustic Transducer with Variable PPM Spacing,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67(8): 1691-1700, doi: 10.1109/TUFFC.2020.2980621.
[8] H. Sun, S. Wang, S. Huang, L. Peng, Q. Wang and W. Zhao, “3D Focusing Acoustic Lens Optimization Method Using Multi-Factor and Multi-Level Orthogonal Test Designing Theory,” Applied Acoustics, 2020, 170: 107538, doi: 10.1016/j.apacoust. 2020.107538.
[7] S. Wang, S. Huang, Q. Wang, L. Peng and W. Zhao, “Accelerated Optimizations of an Electromagnetic Acoustic Transducer With Artificial Neural Networks as Metamodels,” Journal of Sensors an Sensor Systems, 2017, 6(2): 269-284, doi: 10.5194/jsss-6-269-2017.
[6] S. Huang, H. Sun, S. Wang, K. Qu, W. Zhao and L. Peng, “SSWT and VMD Linked Mode Identification and Time-of-Flight Extraction of Denoised SH Guided Waves,” IEEE Sensors Journal, 2021, 21(13): 14709-14717, doi: 10.1109/JSEN.2021.3051658.
[5] 缪立恒, 潘峰, 彭麗莎, 黃松嶺. 基于漏磁信号深度特性的缺陷深度輪廓疊代優化方法. 中國電機工程學報, 2022, 42(8): 3077-3086, doi: 10.13334/j.0258-8013.pcsee.211252.
[4] 黃松嶺, 彭麗莎, 趙偉, 王珅.缺陷漏磁成像技術綜述. 電工技術學報, 2016, 31(20): 55-63, doi: 10.19595/j.cnki.1000-6753.tces. 2016.20.005.
[3] 彭麗莎, 王珅, 劉歡, 黃松嶺, 趙偉. 漏磁圖像的改進灰度級—彩色變換法. bevictor伟德官网學報(自然科學版), 2015, 55(5): 592-596, doi: 10.16511/j.cnki.qhdxxb.2015.05.018.
[2] 彭麗莎, 黃松嶺, 趙偉, 王珅. 漏磁檢測中的缺陷重構方法. 電測與儀表, 2015, 52(13): 1-6; 30.
[1] 黃松嶺, 彭麗莎, 趙偉, 王珅. 無損檢測中的缺陷漏磁成像技術.遠東無損檢測新技術論壇論文集, 2015: 347-354.
2、授權發明專利
[29] 黃松嶺 王文志 趙偉 王珅 黃紫靖 宋小春 彭麗莎,Device and Method for Testing Steel Defect Based on Internal and External Magnetic Perturbation,US 11,378,548 B2,2022.07.05,已授權。
[28] 黃松嶺 王文志 趙偉 王珅 黃紫靖 宋小春 彭麗莎,鋼材缺陷内外磁擾動綜合檢測裝置及檢測方法,ZL 202010556179.4,2022.07.01,已授權。
[27] 黃松嶺 彭麗莎 黃紫靖,管道螺旋焊縫漏磁自動識别方法和裝置,ZL 202011197381.9,2022.07.01,已授權。
[26] 黃松嶺 彭麗莎 趙偉 王珅 鄒軍 汪芙平 龍躍 桂林 董甲瑞 于歆傑 黃紫靖,基于漏磁信号的缺陷輪廓反演方法,ZL 20181035458 9.3,2021.01.01,已授權。
[25] 黃松嶺 彭麗莎 趙偉 王珅 程迪 于佳,缺陷漏磁信号的單元伸縮構建方法,ZL 201710174668.1,2020.06.19,已授權。
[24] 黃松嶺 彭麗莎 趙偉 王珅 于歆傑 董甲瑞 汪芙平,一種基于深度-提離值變換的缺陷漏磁信号求解方法,ZL 201710976832.0,2020.04.07,已授權。
[23] 黃松嶺 彭麗莎 趙偉 王珅 李世松 鄒軍,基于法向分量的僞三維漏磁信号缺陷輪廓識别方法,ZL 201710784842.4,2019.11.22,已授權。
[22] 黃松嶺 彭麗莎 趙偉 王珅 龍躍,鋼闆缺陷磁旋陣成像檢測方法及檢測裝置,ZL 201710516071.0,2019.10.29,已授權。
[21] 黃松嶺 彭麗莎 趙偉 張宇 王珅,缺陷漏磁信号垂直磁化方向單元組合求解方法,ZL 201710252452.2,2019.07.26,已授權。
[20] 黃松嶺 彭麗莎 趙偉 王珅 龍躍,基于素信号組合求解缺陷漏磁信号的方法,ZL 201710681267.5,2019.11.22,已授權。
[19] 黃松嶺 彭麗莎 趙偉 王珅 于歆傑 李世松,基于漏磁信号的垂直分量的缺陷輪廓識别方法及裝置,ZL 201710686539.0,2019.11.22,已授權。
[18] 黃松嶺 趙偉 彭麗莎 王珅 程迪 董甲瑞,Method for Reconstructing Defect,US 10,935,520 B2,2021.03.02,已授權。
[17] 黃松嶺 趙偉 彭麗莎 王珅 程迪 董甲瑞,漏磁檢測單元缺陷伸縮重構方法,ZL 201710174666.2,2020.03.27,已授權。
[16] 黃松嶺 趙偉 彭麗莎 于佳,沿磁化方向的單元組合缺陷漏磁信号計算方法,ZL 201710252481.9,2019.07.02,已授權。
[15] 黃松嶺 龍躍 彭麗莎 王珅 趙偉,管道内檢測器三維跟蹤方法和裝置,ZL 202010070214.1,2021.01.22,已授權。
[14] 黃松嶺 龍躍 彭麗莎 王珅 趙偉,漏磁檢測提離補償和缺陷深度解析的方法及裝置,ZL 201911284632.4 ,2020.08.06,已授權。
[13] 黃松嶺 王文志 彭麗莎 趙偉 王珅 張敬華,Device and Method for Detecting Defect Contour with Omnidectionally Equal Sensitivity Based on Magnetic Excitation,US 11,150,311 B2,2021.10.19,已授權。
[12] 黃松嶺 王文志 彭麗莎 趙偉 王珅 黃紫靖,磁激各向同性缺陷輪廓成像裝置及成像方法,ZL 201911280680.6,2021.12.14,已授權。
[11] 黃松嶺 黃紫靖 王文志 彭麗莎 龍躍,鋼材缺陷磁成像裝置及方法,ZL 202010646149.2,2022.08.16,已授權。
[10] 黃松嶺 趙偉 王珅 彭麗莎 張宇于歆傑 鄒軍 桂林 汪芙平,High-Precision Imaging and Detecting Device for Detecting Small Defect of Pipeline by Helical Magnetic Matrix,US 10,338,160 B2,2019.07.02,已授權。
[9] 黃松嶺 龍躍 宋小春 彭麗莎 王珅 趙偉,漏磁檢測探頭姿态補償方法及裝置,ZL 201911285985.6,2021.08.20,已授權。
[8] 黃松嶺 趙偉 王珅 彭麗莎 張宇 于歆傑 鄒軍 桂林 汪芙平,用于管道微小缺陷檢測的螺旋磁矩陣高精度成像檢測裝置,ZL 201710517066.1,2021.04.27,已授權。
[7] 黃松嶺 趙偉 王珅 丁睿 彭麗莎,鐵磁性構件離線漏磁成像檢測裝置及方法,ZL 201510660623.6,2018.05.29,已授權。
[6] 黃松嶺 龍躍 趙偉 王珅 彭麗莎 宋小春,漏磁檢測缺陷邊沿識别的方法,ZL 202010114747.5 ,2021.10.22,已授權。
[5] 黃松嶺 趙偉 王珅 于歆傑 彭麗莎 鄒軍 汪芙平 董甲瑞 桂林 龍躍,電磁多場耦合缺陷綜合檢測評價方法及裝置,ZL 201810711896.2,2020.04.07,已授權。
[4] 黃松嶺 孫洪宇 趙偉 王珅 彭麗莎 汪芙平 黃紫靖 董甲瑞,适用于鋁闆缺陷檢測的SV超聲體波單側聚焦換能器,ZL 201910496301.0,2020.11.03,已授權。
[3] 黃松嶺 趙偉 王珅 于歆傑 彭麗莎 鄒軍 汪芙平 董甲瑞 桂林 龍躍,Method and Device for Detecting and Evaluating Defect, US 11,099,156 B2,2021.08.24,已授權。
[2] 黃松嶺 孫洪宇 黃紫靖 王珅 彭麗莎,海底管道超聲導波全向聚焦聲透鏡柔性換能器及檢測方法,ZL 202010713397.4,2021.10.22,已授權。
[1] 黃松嶺 趙偉 丁睿 張振宇 孫長安 聶長志 王珅 彭麗莎 李世松,鐵軌缺陷的檢測方法、檢測系統及車輛,ZL 201510784666.5,2018.06.19,已授權。