En
  • bevictor伟德官网電機系
    官方微信公衆号
    bevictor伟德官网電機系本科生
    官方微信公衆号
    bevictor伟德官网電機系研究生
    官方微信公衆号
    bevictor伟德官网電機系校友會
    官方微信公衆号
    bevictor伟德官网能源互聯網創新研究院
    官方微信公衆号
    清華四川能源互聯網研究院
    官方微信公衆号

電機系微信公衆号

校友微信公衆号

研究生微信公衆号

本科生微信二維碼

北京院微信公衆号

四川院微信公衆号

“雙創”專欄

當前位置: 首頁 > 本系動态 > “雙創”專欄 > 正文

報告題目:Future Electronic Power Systems – A Virginia Tech Perspective

報告人: Dr. Dushan Boroyevich

University Distinguished Professor

Director of Center for Power Electronics Systems (CPES)

Virginia Tech, Blacksburg, Virginia, U.S.A.

報告時間: 2017-11-2 9:30

報告地點: 西主樓2區203

聯系人: 肖 曦

簡介:Dushan Boroyevich received his Dipl. Ing. degree from the University of Belgrade in 1976 and his M.S. degree from the University of Novi Sad in 1982, in what then used to be Yugoslavia. He received his Ph.D. degree in 1986 from Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, USA. From 1986 to 1990, he was an assistant professor and director of the Power and Industrial Electronics Research Program in the Institute for Power and Electronic Engineering at the University of Novi Sad. He then joined the Bradley Department of Electrical and Computer Engineering at Virginia Tech as associate professor. He is now University Distinguished Professor and Associate Vice President for Research and Innovation in Energy Systems at Virginia Tech, and Director of CPES.

Abstract – After a decade of premonition, it is becoming increasingly clear that the future human energy needs will be dominantly provided by electricity provided by renewable and distributed generation and delivered over electronic power “pipelines”. Moreover, modern electronic power distribution systems built for airplanes, ships, road and off-road vehicles, data-centers, industrial processes, and buildings, often comprise hundreds of electronic power converters, which is already challenging our basic understanding about how power systems are designed and operated. In order not only to cope with the trend, but to guide it instead, it is essential to develop innovative electronic power system architectures, new control concepts for the solid-state power substations, and methods that allow improved system integration and assessment of dynamic interactions.

—— 分享 ——

上一篇:Toward Next Generation Tools for Modeling and Analysis of Evolving Energy Conversion Systems

下一篇:Development of Power Quality Analyzing Platforms

關閉

Baidu
sogou